Free-size optimization is the most specialized of these methods and is often applied to optimize machined structures and parts stamped from tailor-welded blanks. It is perhaps most widely used, however, in the design of complex laminate composite components.

Free-size optimization helps engineers find the optimal thickness, optimal ply shapes, and optimal stacking sequence for laminate composites. Engineers can set manufacturing constraints – such as the number of fiber orientations, the maximum thickness of each orientation, and the total laminate thickness – and then quickly generate an ideal concept design.

Free-size optimization helps engineers find the optimal thickness, optimal ply shapes, and optimal stacking sequence for laminate composites.

Free-size optimization uses the concept of super-plies to define a continuous distribution of thickness for each fiber orientation that meets the part performance requirements. Then, engineers can fine-tune the designs using ply-bundle sizing optimization. Each bundle represents multiple plies of the same orientation and shape while considering detailed behavior constraints, including ply failure. Finally, a ply stacking sequence optimization arranges every laminate to satisfy all manufacturing constraints while delivering optimal performance.

About Rahul Ponginan

Senior Manager - Global Academic Programs
Browse 20+ free eBooks.
Browse 20+ free eBooks.

Have a question or comment?

Post your comment/question on our user forum.